Abstract

In rats receiving aldosterone/salt treatment (ALDOST), increased Ca2+ excretion leads to a fall in plasma-ionized Ca2+ and appearance of secondary hyperparathyroidism (SHPT) with parathyroid hormone (PTH)-mediated intracellular Ca2+ overloading inducing oxidative stress in diverse tissues. Parathyroidectomy prevents this scenario. Rats with ALDOST were cotreated with cinacalcet (Cina), a calcimimetic that raises the threshold of the parathyroids' Ca(2+)-sensing receptor. We monitored plasma-ionized [Ca2+]o, PTH, and total Ca2+ in heart and peripheral blood mononuclear cells (PBMC), and evidence of oxidative stress in heart, PBMC, and plasma. Cina-treated rats for 4 weeks were compared with 4 weeks of ALDOST alone and with untreated age-/gender-matched controls. In comparison to controls, ALDOST led to a fall (P < 0.05) in Ca2+ (1.16 +/- 0.01 vs 1.03 +/- 0.01 mmol/L), which was not prevented by Cina (1.01 +/- 0.03 mmol/L); a rise (P < 0.05) in plasma PTH (36 +/- 7 vs 134 +/- 19 pg/mL) that was attenuated by Cina (69 +/- 12 pg/mL); increased (P < 0.05) cardiac [Ca2+] (3.92 +/- 0.25 vs 6.78 +/- 0.35 nEq/mg FFDT) and PBMC [Ca2+]i (29.8 +/- 2.3 vs 50.2 +/- 2.3 nmol/L), each of which was prevented with Cina (3.65 +/- 0.10 nEq/mg FFDT and 32.5 +/- 6.0 nmol/L, respectively); increased cardiac MDA (0.56 +/- 0.03 vs 0.94+/-0.07 nmol/mg protein) and PBMC H2O2 production (63.5 +/- 7.5 vs 154.0 +/- 25.2 mcb) and reduced (P < 0.05) plasma alpha1-AP activity (39.8 +/- 0.6 vs 29.6 +/- 1.8 mM), each prevented by Cina (0.66 +/- 0.04 mmol/mg protein, 58.2 +/- 12.7 mcb and 37.0 +/- 1.2 mM, respectively). PTH-mediated intracellular Ca2+ overloading accounts for the induction of oxidative stress in diverse tissues in rats with aldosteronism and which can be prevented by Cina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call