Abstract

SummaryAbout 32% of the 99 million ha wheat grown in developing countries experiences varying levels of drought stress. Three major drought types have been identified: Late drought (LD) is common in the Mediterranean region, early drought (ED) is found in Latin America and wheat is produced on residual soil moisture (RM) in the Indian subcontinent and part of Australia. Until 1983, CIMMYT selected all germplasm under near optimum conditions for its yield potential and tested only advanced lines under drought. In spite of many critics, this approach proved to be successful, since in the mid 80’s CIMMYT germplasm was grown on 45% of the wheat area in LC with annual rainfall from 300–500 mm and on 21% in areas with less than 300 mm. Since 1983, CIMMYT’s drought breeding methodology is to alternate segregating populations between drought stressed and fully irrigated conditions (FI) and to test advanced lines under a line source irrigation system. To compare the efficiency of these approach, yield of four, mostly leading varieties, from each of the regions with LD, ED, RM, and FI and twelve recent CIMMYT cultivars selected for high yield under FI and RM conditions (ALT) were compared under four different moisture regimes (FI, LD, ED, and RM) in 89–90 and 90–91 in Yaqui Valley, Mexico. Genotypic correlation between yield and days to flowering, days to maturity, height, grains m−2, TKW, test weight and grain fill period were calculated.Mean grain yield of the four best lines in the ALT group was highest under all moisture stress regimes, followed by the FI-group. However, the highest yielding cultivar within each moisture regime was from the FI-group under FI, from the LD-group under LD, and from the ALT-group under ED and RM conditions. Estimates for genetic advance suggest that FI is the best environment for increasing grain yield even in all three drought environments. This indicates that yield potential per se is beneficial also in drought environments. The highest yield in drought environments was realized by the CIM cultivars selected under FI and RM. Simultaneous evaluation of the germplasm under near optimum conditions, to utilize high heritabilities and identify lines with high yield potential, and under stress conditions to preserve alleles for drought tolerance seem at present the best strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call