Abstract

Cilostazol, a drug commonly used in the treatment of intermittent claudication is a selective phosphodiesterase III inhibitor. It affects cell proliferation, increases cAMP levels, activates the cyclic AMP-dependent protein kinase and inhibits E2F in vascular cells. Polycystic kidney disease, a common genetic disorder, is characterized by increased cell proliferation, basement membrane abnormalities and fluid secretion. An established in vitro model of this disease is the canine Madin–Darby cell line (MDCK). In this communication, we investigated the effects of cilostazol exposure in MDCK cells. A reduced cell proliferation rate with an arrest in the G1 phase of the cell cycle was detected. Accordingly, several transcription factors associated with cell cycle control were affected by cilostazol, particularly c-myc. c-Myc DNA binding as well as its transcriptional activity was severely impaired in cilostazol-treated cells. Pharmacological tools demonstrated that besides the involvement of the cyclic AMP-dependent protein kinase, the extracellular signal-regulated kinases I/II participate in the response. These results suggest that cilostazol inhibits cell proliferation through c-myc transcriptional control, also pave the way to our better understanding of molecular transactions triggered by this drug and strengthen its potential use in other malignancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.