Abstract
The neuroprotective effect of cilostazol, an antiplatelet drug, was examined after 24 h permanent middle cerebral artery (MCA) occlusion in mice, and explored the possible underlying mechanism by examining metallothionein (MT)-1 and -2 induction in vivo. Cilostazol (30 mg/kg) was intraperitoneally administered at 12 h before, 1 h before, and just after MCA occlusion. Mice were euthanized at 24 h after the occlusion, and the neuronal damage was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Cilostazol significantly reduced the infarct area and volume, especially in the cortex. Real-time RT-PCR revealed increased mRNA expressions for MT-1 and -2 in the cortex of normal brains at 6 h after cilostazol treatment without MCA occlusion. MT-1 and -2 immunoreactivity was also increased in the cortex of such mice, and this immunoreactivity was observed in the ischemic hemisphere at 24 h after MCA occlusion (without cilostazol treatment). The strongest MT-1 and -2 immunoreactivity was detected in MCA-occlused mice treated with cilostazol [in the peri-infarct zone of the cortex (penumbral zone)]. These findings indicate that cilostazol has neuroprotective effects in vivo against permanent focal cerebral ischemia, especially in the penumbral zone in the cortex, and that MT-1 and -2 may be partly responsible for these neuroprotective effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.