Abstract

Cilk (pronounced “silk”) is a C-based runtime system for multi-threaded parallel programming. In this paper, we document the efficiency of the Cilk work-stealing scheduler, both empirically and analytically. We show that on real and synthetic applications, the “work” and “critical path” of a Cilk computation can be used to accurately model performance. Consequently, a Cilk programmer can focus on reducing the work and critical path of his computation, insulated from load balancing and other runtime scheduling issues. We also prove that for the class of “fully strict” (well-structured) programs, the Cilk scheduler achieves space, time and communication bounds all within a constant factor of optimal. The Cilk runtime system currently runs on the Connection Machine CM5 MPP, the Intel Paragon MPP, the Silicon Graphics Power Challenge SMP, and the MIT Phish network of workstations. Applications written in Cilk include protein folding, graphic rendering, backtrack search, and the *Socrates chess program, which won third prize in the 1994 ACM International Computer Chess Championship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.