Abstract

The aim of this study was to investigate the effect of inhibiting αvβ(3)/α(v) β(5) integrins by cilengitide in experimentally induced breast cancer bone metastases using noninvasive imaging techniques. For this purpose, nude rats bearing established breast cancer bone metastases were treated with cilengitide, a small molecule inhibitor of αvβ(3) and αvβ(5) integrins (75 mg/kg, five days per week; n = 12 rats) and compared to vehicle-treated control rats (n = 12). In a longitudinal study, conventional magnetic resonance imaging (MRI) and flat panel volumetric computed tomography were used to assess the volume of the soft tissue tumor and osteolysis, respectively, and dynamic contrast-enhanced (DCE-) MRI was performed to determine functional parameters of the tumor vasculature reflecting blood volume and blood vessel permeability. In rats treated with cilengitide, VCT and MRI showed that osteolytic lesions and the respective bone metastatic soft tissue tumors progressed more slowly than in vehicle-treated controls. DCE-MRI indicated a decrease in blood volume and an increase in vessel permeability and immunohistology revealed increased numbers of immature vessels in cilengitide-treated rats compared to vehicle controls. In conclusion, treatment of experimental breast cancer bone metastases with cilengitide resulted in pronounced antiresorptive and antitumor effects, suggesting that αvβ(3)/αvβ(5) inhibition may be a promising therapeutic approach for bone metastases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.