Abstract
This study explores the CIL-102 suppression mechanism on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia K562 cells. CIL-102 attenuated K562 cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels. Moreover, CIL-102 reduced luciferase activity of MMP-2/MMP-9 promoter constructs and MMP-2/MMP-9 mRNA stability. CIL-102 treatment induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Transfection of constitutively active MEK1 restored MMP-2 and MMP-9 promoter activity in CIL-102-treated cells, while suppression of p38 MAPK/JNK activation abolished CIL-102-induced MMP-2/MMP-9 mRNA decay. CIL-102-induced p38 MAPK/JNK activation led to protein phosphatase 2A-mediated tristetraprolin (TTP) down-regulation. The reduction in TTP-KH-type splicing regulatory protein (KSRP) complexes formation promoted KSRP-mediated MMP-2/MMP-9 mRNA decay in CIL-102-treated K562 cells. Moreover, CIL-102 reduced invasion and MMP-2/MMP-9 expression in breast and liver cancer cells. Taken together, our data indicate that CIL-102 induces MMP-2/MMP-2 down-regulation via simultaneous suppression of genetic transcription and mRNA stability, and suggest a potential utility for CIL-102 in reducing MMP-2/MMP-9-mediated cancer progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.