Abstract

Construction of an optimal vaccine against tumors relies on the availability of appropriate tumor-specific antigens capable to stimulate CD4+ T helper cells (TH) and CD8+ cytolytic T cells (CTL). CTL are considered the major effectors of the anti-tumor adaptive immune response as they recognize antigens presented on MHC class I (MHC-I) molecules usually expressed in all cells and thus also in tumors. However, attempts to translate in clinics vaccination protocols based only on tumor-specific MHC-I-bound peptides have resulted in very limited, if any, success. We believe failure was mostly due to inadequate triggering of the TH arm of adaptive immunity, as TH cells are necessary to trigger and maintain the proliferation of all the immune effector cells required to eliminate tumor cells. In this review, we focus on a novel strategy of anti-tumor vaccination established in our laboratory and based on the persistent expression of MHC class II (MHC-II) molecules in tumor cells. MHC-II are the restricting elements of TH recognition. They are usually not expressed in solid tumors. By genetically modifying tumor cells of distinct histological origin with the MHC-II transactivator CIITA, the physiological controller of MHC-II gene expression discovered in our laboratory, stable expression of all MHC class II genes was obtained. This resulted in tumor rejection or strong retardation of tumor growth in vivo in mice, mediated primarily by tumor-specific TH cells as assessed by both depletion and adoptive cell transfer experiments. Importantly these findings led us to apply this methodology to human settings for the purification of MHC-II-bound tumor specific peptides directly from tumor cells, specifically from hepatocarcinomas, and the construction of a multi-peptide (MHC-II and MHC-I specific) immunotherapeutic vaccine. Additionally, our approach unveiled a noticeable exception to the dogma that dendritic cells are the sole professional antigen presenting cells (APC) capable to prime naïve TH cells, because CIITA-dependent MHC-II expressing tumor cells could also perform this function. Thus, our approach has served not only to select the most appropriate tumor specific peptides to activate the key lymphocytes triggering the anti-tumor effector functions but also to increase our knowledge of intimate mechanisms governing basic immunological processes.

Highlights

  • In recent years, tumor immunology has witnessed a dramatic development mostly due to the possibility of applying the acquired knowledge in the field to the development of concrete and realistic approaches to fight cancer

  • The above described studies clearly demonstrated that CIITA-driven MHC class II (MHC-II) expressing tumor cells are strongly recognized in vivo and trigger tumor specific CD4+ T helper cells (TH) cell responses that are protective against subsequent rechallenge with parental tumors

  • The capacity of CIITA-dependent MHC class II expressing tumor cells to serve as antigen presenting cells (APC) in vivo raises the question of whether these cells possess or acquire the expression of costimulatory molecules, such as B7.1 (CD80) and B7.2 (CD86) that may serve as “signal 2” in triggering antigen-specific naïve TH cells upon interaction with CD28 [50], as previous studies of another group has shown that prevention of tumor growth in vivo of CIITA-modified tumor cells in a distinct model of mammary carcinoma in H-2q model required expression of CD80 [51]

Read more

Summary

Introduction

Tumor immunology has witnessed a dramatic development mostly due to the possibility of applying the acquired knowledge in the field to the development of concrete and realistic approaches to fight cancer. When experiments were performed to stably express CIITA in both human and mouse tumor cells, we could demonstrate the constitutive expression of MHC-II genes and corresponding molecules and, importantly, the acquisition of antigen processing and presentation to primed TH cells [29].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.