Abstract
The actions of ciguatoxins from the Pacific (P-CTX-1) and Caribbean (C-CTX-1) regions were investigated in isolated parasympathetic neurons from rat intracardiac ganglia using patch-clamp recording techniques. Under current-clamp conditions, bath application of P-CTX-1 (1-10 nm) or C-CTX-1 (10-30 nm) caused a gradual depolarization that was accompanied by oscillation of the membrane potential leading to tonic action potential firing. Membrane potential oscillations were observed between -45 and -60 mV and had an amplitude of 10-20 mV and a mean frequency of 10 Hz. Oscillation frequency was temperature-dependent with a Q10 of 2.0. Membrane oscillations were temporarily inhibited by hyperpolarizing current pulses and potentiated by weak depolarizing current pulses. The amplitude of oscillations was reduced upon lowering the external Na+ concentration and inhibited by tetrodotoxin (TTX), tetracaine or Zn2+. Tetraethylammonium, 4-aminopyridine, Cs+, Cd2+, Ba2+, 1,4,4'-diothiocyanato-2,2'-stilbenedisulphonic acid (DIDS) and ouabain had no effect on the CTX-1-induced membrane depolarization and oscillations. Brevetoxin (PbTx-3, 100 nm), in contrast to CTX-1, caused a membrane depolarization that was not associated with oscillation of the membrane potential. Under voltage-clamp conditions, P-CTX-1 inhibited the peak amplitude of the voltage-dependent Na+ current and shifted the activation curve to more negative potentials, but membrane oscillations were not seen in this configuration. These results suggest that ciguatoxins cause oscillation of the membrane potential in mammalian autonomic neurons by modifying the activation and inactivation properties of a population of TTX-sensitive Na+ channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.