Abstract

Cigarette smoking is the major aetiologic factor in chronic obstructive pulmonary disease (COPD). Lung fibroblasts are key participants in the maintenance of the extracellular matrix within the lung parenchyma. However, it still remains unknown how pulmonary fibroblasts are affected by cigarette smoking. Therefore, in this study, we isolated lung fibroblasts from mice and determined the apoptotic mechanism in response to cigarette smoke extract (CSE). When the lung fibroblasts were exposed to CSE, the generation of ROS was increased as shown by H2-DCFDA staining and Flow Cytometry. By immunocytochemistry, Ki67 expressing cells gradually decreased in a dose-dependent manner. The nitrite concentration in the supernatants increased, while the SOD activity and GSH recycling decreased in response to CSE. CSE increased the mRNA levels of TNF-α and COX-2, and the secretory proteins TNF-α and IL-6 increased as measured by ELISA. We next determined whether this inflammatory process is associated with the Bax/Bcl-2 apoptosis pathway. The Bax/Bcl-2 mRNA ratio increased, and cleaved caspase-3 protein was activated in the lung fibroblasts treated with CSE. Moreover, CSE induced the phosphorylation of STAT1 at Tyr701/Ser727 and increased the activation of ERK1/2, p38, and JNK in the MAPK pathway. Taken together, these data suggest that CSE-mediated inflammation alters the redox regulation via the MAPK-STAT1 pathway, leading to intrinsic apoptosis of lung fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.