Abstract

BackgroundIn the brain, the inducible form of heme oxygenase (HO-1) has been recently demonstrated to exacerbate early brain injury produced by intracerebral hemorrhagic stroke which incident rate has been correlated with cigarette smoking previously. Interestingly, cigarette smoke (CS) or chemicals present in CS have been shown to induce HO-1 expression in various cell types, including cerebral endothelial cells. However, the mechanisms underlying CS modulating HO-1 protein expression are not completely understood in the brain vessels.ObjectiveThe aim of the present study was to investigate the mechanisms underlying CS modulating HO-1 protein expression in cerebral endothelial cells.MethodsCultured cerebral endothelial cells (bEnd.3) were used to investigate whether a particulate phase of cigarette smoke extract (PPCSE) regulates HO-1 expression and to investigate the molecular mechanisms involved in HO-1 expression in bEnd.3 cells.ResultsWe demonstrated that PPCSE (30 μg/ml) significantly induced HO-1 protein expression and its enzymatic activity in bEnd.3 cells determined by western blotting and bilirubin formation, respectively. PPCSE-induced HO-1 expression was mediated through phosphatidylcholine phospholipase C (PC-PLC), PKCδ, and PI3K/Akt which were observed by pretreatment with their respective pharmacological inhibitors or transfection with dominant negative mutants of PKCδ and Akt. ROS scavenger (N-acetyl-L-cysteine, NAC) blocked the PPCSE-induced ROS generation and HO-1 expression. Pretreatment with selective inhibitors of PKCδ (rottlerin) and NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin (APO)] attenuated the PPCSE-induced NADPH oxidase activity, ROS generation, and HO-1 expression. In addition, we found that PPCSE induced PI3K/Akt activation via NADPH oxidase/ROS-dependent PDGFR phosphorylation.ConclusionsTaken together, these results suggested that PPCSE-induced HO-1 expression is mediated by a PC-PLC/PKCδ/NADPH oxidase-dependent PDGFR/PI3K/Akt pathway in bEnd.3 cells.

Highlights

  • In the brain, the inducible form of heme oxygenase (HO-1) has been recently demonstrated to exacerbate early brain injury produced by intracerebral hemorrhagic stroke which incident rate has been correlated with cigarette smoking previously

  • We demonstrated that Particulate phase of CS extract (PPCSE) (30 μg/ml) significantly induced HO-1 protein expression and its enzymatic activity in bEnd.3 cells determined by western blotting and bilirubin formation, respectively

  • PPCSE-induced HO-1 expression was mediated through phosphatidylcholine phospholipase C (PC-PLC), PKCδ, and PI3K/Akt which were observed by pretreatment with their respective pharmacological inhibitors or transfection with dominant negative mutants of PKCδ and Akt

Read more

Summary

Introduction

The inducible form of heme oxygenase (HO-1) has been recently demonstrated to exacerbate early brain injury produced by intracerebral hemorrhagic stroke which incident rate has been correlated with cigarette smoking previously. Cigarette smoke (CS) or chemicals present in CS have been shown to induce HO-1 expression in various cell types, including cerebral endothelial cells. CS or chemicals present in CS have been shown to induce HO-1 expression in various cell types [7,8,9,10] including cerebral endothelial cells [11]. PPCSE-induced HO-1 expression in cerebral vessels might be an important factor for brain injury in hemorrhagic stroke which incident rate has been correlated with cigarette smoking previously [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.