Abstract

The aim of this study was to explore the changes in the characteristics of titanium surface and the osteoblast-titanium interactions under cigarette smoke extract (CSE) exposure. In this study, CSE was used to simulate the oral liquid environment around the implant under cigarette smoke exposure. Titanium samples were immersed in CSE to explore the changes in the characteristics of titanium surface. The physical properties of titanium surface were measured, including surface micromorphology, surface elemental composition, roughness, and surface hydrophilicity. MC3T3-E1 cells were cultured on the titanium surface in vitro under different concentrations of CSE exposure, and cell adhesion, cell proliferation, and osteogenic differentiation were observed. The surface micromorphology and elemental composition of titanium surface changed under CSE exposure. No obvious changes were found in the surface roughness and the hydrophilicity of titanium samples. Moreover, the results of in vitro study showed that CSE exposure downregulated the cell spreading, proliferation, and osteogenic differentiation of MC3T3-E1 cells on the titanium surface. It could be speculated that some carbon-containing compounds from CSE adsorbed on the titanium surface and the osteoblast-titanium interactions were influenced under CSE exposure. It is hoped that these results could provide valuable information for further studies on smoking-mediated inhibition of implants osseointegration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.