Abstract

The study of extensive material on the results of well cementing in various regions of the world shows that the quality of plugging operations is largely determined by the degree of displacement of the drilling fluid from the well. No one has ever specifically developed a buffer fluid for plugback cementing. When carrying out reverse cementing, determining the end time of the cementing process is of great importance, which largely depends on the choice of buffer fluid. The purpose of this work is to give the buffer fluid the properties of a magnetic locking element during plugback cementing of casing strings while increasing its separating ability. To achieve this, carboxymethyl cellulose is additionally dissolved in water before the displacement of the components when preparing a buffer liquid. Rubber crumbs are then mixed with the filler, and mixing is carried out under a pressure of at least 0.2 MPa. The buffer liquid contains the following components in the following wt.% ratios: carboxymethylcellulose 4–5, crumb rubber 7–8, ferromagnetic metal powder 15–16, with the remaining portion being water. The buffer fluid of the optimal composition not only maintains no less (than 98%) displacing power, but also exhibits an exceptionally low filler fall rate (when diluted by half). Furthermore, it does not linger in a pipe with an open end and an annular magnet inside, preventing settling plugs. The economic benefits of using a buffer fluid primarily stems from ensuring reliable control over the filling of the annular space with cement slurry, preventing its pumping from the annulus to the intracasing space, and preventing clogging of the productive underlying formation with cement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call