Abstract

Assessing the model fit quality of statistical models for network data is an ongoing and under-examined topic in statistical network analysis. Traditional metrics for evaluating model fit on tabular data such as the Bayesian Information Criterion are not suitable for models specialized for network data. We propose a novel self-developed goodness of fit (GOF) measure, the `stratified-sampling cross-validation' (SCV) metric, that uses a procedure similar to traditional cross-validation via stratified-sampling to select dyads in the network's adjacency matrix to be removed. SCV is capable of intuitively expressing different models' ability to predict on missing dyads. Using SCV on real-world social networks, we identify the appropriate statistical models for different network structures and generalize such patterns. In particular, we focus on conditionally independent dyad (CID) models such as the Erdos Renyi model, the stochastic block model, the sender-receiver model, and the latent space model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.