Abstract

A transparent film integrating antifouling, antifogging, and antibacterial properties is crucial for its application as a protective mask, goggles, or lens. Herein, applying dynamic injection molding coupled with a bionic gradient template, a fast and efficient method is proposed for the preparation of the bionic polystyrene surface (BNPPS) with a cicada wing-inspired nanopillar structure. The contact angle of the BNPPS film increases continuously along the wing vein, while the sliding angle decreases continuously, mimicking the gradient wetting state of a cicada wing and providing excellent self-propelled removal properties for tiny water droplets. Notably, the BNPPS film has a transmittance higher than 90% and a reflectivity lower than 5% in the visible light range. Dyeing water, milk, juice, cola, and ink can slide smoothly from the BNPPS film surface without leaving any residue. Importantly, the nanopillars on the BNPPS film surface can penetrate and kill most of the Escherichia coli within 20 min. Therefore, the prepared BNPPS film with sufficient mechanical strength gathers the unique properties of the cicada wing together. The proposed research is expected to offer valuable guidance for fabricating self-cleaning, antifogging, and antibacterial optical devices that could be utilized in medical and vision systems operating in harsh environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.