Abstract
In wireless sensor networks, missing sensor data is inevitable due to the inherent characteristic of wireless sensor networks, and it causes many difficulties in various applications. To solve the problem, the best way is to estimate the missing data as accurately as possible. In this paper, for the data of changing smoothly, a temporal correlation based missing data estimation algorithm is proposed, which adopts the cubic spline interpolation model to capture the trend of data varying. Next, for the data of changing non-smoothly, a spatial correlation based missing data estimation algorithm is proposed, which adopts the multiple regression model to describe the data correlation among multiple neighbor nodes. Based on these two algorithms, an adaptive missing data estimation algorithm, called CIAM, is proposed for processing the missing data when the category of data changing is unknown. Experimental results on two realworld datasets show that the proposed algorithms can estimate the missing data accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.