Abstract
Deep learning-based methods have recently shown great promise in medical image segmentation task. However, CNN-based frameworks struggle with inadequate long-range spatial dependency capture, whereas Transformers suffer from computational inefficiency and necessitate substantial volumes of labeled data for effective training. To tackle these issues, this paper introduces CI-UNet, a novel architecture that utilizes ConvNeXt as its encoder, amalgamating the computational efficiency and feature extraction capabilities. Moreover, an advanced attention mechanism is proposed to captures intricate cross-dimensional interactions and global context. Extensive experiments on two segmentation datasets, namely BCSD, and CT2USforKidneySeg, confirm the excellent performance of the proposed CI-UNet as compared to other segmentation methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.