Abstract

Chung Park (1938–2003) was a true pioneer of magnetosphere–ionosphere coupling research. During a short career at Stanford University that began in 1970 and ended in 1981, he wrote seminal papers on several topics. Using ground-based whistler data, he was the first to demonstrate experimentally that day-side upward ion flow from the mid-latitude ionosphere was sufficient to maintain the night-time ionosphere. He made the only measurements to date of longitudinally localized drainage of significant quantities of plasmaspheric plasma into the underlying ionosphere during a period of enhanced convection activity. He pioneered in demonstrating the presence at ionospheric heights of geophysically important electric fields that originate in the troposphere in thunderstorm centers. He cooperated in a unique study of the guidance of whistler-mode waves by field-aligned density irregularities (ducts) in the magnetosphere. Park provided unique observational data on nonlinear wave–particle interaction processes such as: (i) the development of sidebands during the injection of whistler-mode waves from Siple, Antarctica, and (ii) the mysterious whistler precursor phenomenon. Today, in spite of the several decades that have elapsed since his work, Park's early findings remain cornerstones of our understanding of magnetosphere–ionosphere coupling processes. Some of his later studies of non-linear magnetospheric wave–particle interaction phenomena have stirred lively debate, and today remain relevant to a number of topics in space plasma wave research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.