Abstract

Delivery of poorly soluble drugs results in poor absorption and low bioavailability to the systemic circulation. Chrysophanol (1,8-dihydroxy 3-methyl anthraquinone) a plant derived herbal drug is well known for its strong anti-inflammatory, anti-mutagenic, and anti-carcinogenic activities but poor aqueous solubility (hence the lower dissolution rate), is a major barrier in its intestinal absorption. To improve the bioavailability and prolong its duration in the body system, its phospholipid complex was prepared and evaluated for various physicochemical parameters like encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry (DSC), X-ray powder diffractometry (X-RPD), IR spectroscopy, aqueous/n-octanol solubility, and dissolution study. The phospholipid complex of chrysophanol was found, fluffy and porous with rough surface morphology. FTIR, DSC, and X-RPD data confirmed the complex formation. The 89.1 % of chrysophanol was encapsulated in the phospholipid complex. The aqueous solubility of chrysophanol was improved from 0.60 to 30.09 μg ml−1 in the prepared complex. The improved dissolution was shown by the complex (which showed continuous release up to 83.67 % of chrysophanol) at the end of 12 h, in comparison to free drug (which showed a total of only 45.12 % drug release at the end of 12 h of dissolution study).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call