Abstract

Novel anti-tuberculosis drugs are essential to manage drug-resistant tuberculosis, caused by Mycobacterium tuberculosis. We recently reported the antimycobacterial activity of chrysomycin A in vitro and in infected macrophages. In this study, we report that it inhibits the growth of drug-resistant clinical strains of M. tuberculosis and acts in synergy with anti-TB drugs such as ethambutol, ciprofloxacin, and novobiocin. In pursuit of its mechanism of action, it was found that chrysomycin A is bactericidal and exerts this activity by interacting with DNA at specific sequences and by inhibiting the topoisomerase I activity of M. tuberculosis. It also exhibits weak inhibition of the DNA gyrase enzyme of the pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.