Abstract

Bacteria secrete siderophores whose function is to acquire iron. In recent years, the siderophores of several Chryseobacterium species were shown to promote the health and growth of various plants such as tomato or rice. However, the chemical nature of Chryseobacterium siderophores remained unexplored despite great interest. In this work, we present the purification and structure elucidation by nuclear magnetic resonance (NMR) spectroscopy and tandem mass spectrometry (MS/MS) of chryseochelin A, a novel citrate-based siderophore secreted by three Chryseobacterium strains involved in plant protection. It contains the unusual building blocks 3-hydroxycadaverine and fumaric acid. Furthermore, the unstable structural isomer chryseochelin B and its stable derivative containing fatty acid chains, named chryseochelin C, were identified by mass spectrometric methods. The latter two incorporate an unusual ester connectivity to the citrate moiety showing similarities to achromobactin from the plant pathogen Dickeya dadantii. Finally, we show that chryseochelin A acts in a concentration-dependent manner against the plant-pathogenic Ralstonia solanacearum strain by reducing its access to iron. Thus, our study provides valuable knowledge about the siderophores of Chryseobacterium strains, which have great potential in various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.