Abstract

Cleavage of the antigenic telopeptide region from type I collagen yields atelocollagen, and this is widely used as a scaffold for bone regeneration combined with cells, growth factors, etc. However, neither the biological effect of atelocollagen alone or its contribution to bone regeneration has been well studied. We evaluated the chronological histological changes during bone regeneration following implantation of non-crosslinked atelocollagen (Koken Co., Ltd.) in rat calvarial defects. One week after implantation, osteogenic cells positive for runt-related transcription factor 2 (Runx2) and osteoclasts positive for tartrate-resistant acid phosphatase (TRAP) were present in the atelocollagen implant in the absence of bone formation. The number of Runx2-positive osteogenic cells and Osterix-positive osteoblasts increased 2weeks after implantation, and bone matrix proteins (osteopontin, OPN; osteocalcin, OC; dentin matrix protein 1, DMP1) were distributed in newly formed bone in a way comparable to normal bone. Some resorption cavities containing osteoclasts were also present. By 3weeks after implantation, most of the implanted atelocollagen was replaced by new bone containing many resorption cavities, and OPN, OC, and DMP1 were deposited in the residual collagenous matrix. After 4weeks, nearly all of the atelocollagen implant was replaced with new bone including hematopoietic marrow. Immunohistochemistry for the telopeptide region of type I collagen (TeloCOL1) during these processes demonstrated that the TeloCOL1-negative atelocollagen implant was replaced by TeloCOL1-positive collagenous matrix and new bone, indicating that new bone was mostly composed of endogenous type I collagen. These findings suggest that the atelocollagen itself can support bone regeneration by promoting osteoblast differentiation and type I collagen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call