Abstract

Glacier forelands provide an excellent opportunity to investigate vegetation succession and soil development along the chronosequence; however, there are few studies on soil biogeochemical changes from environmental factors, aside from time. This study aimed to investigate soil development and biogeochemical changes in the glacier foreland of Midtre Lovénbreen, Svalbard, by considering various factors, including time. Eighteen vegetation and soil variables were measured at 38 different sampling sites of varying soil age, depth, and glacio-fluvial activity. Soil organic matter (SOM) was quantitatively measured, and the compositional changes in SOM were determined following size-density fractionation. In the topsoil, the soil organic carbon (SOC) and total nitrogen (N) content was found to increase along the soil chronosequence and were highly correlated with vegetation-associated variables. These findings suggest that plant-derived material was the main driver of the light fraction of SOM accumulation in the topsoil. The heavy fractions of SOM were composed of microbially transformed organic compounds, eventually contributing to SOM stabilization within short 90-yr deglaciation under harsh climatic conditions. In addition to time, the soil vertical profiles showed that other environmental parameters, also affected the soil biogeochemical properties. The high total phosphorous (P) content and electrical conductivity in the topsoil were attributed to unweathered subglacial materials and a considerable amount of inorganic ions from subglacial meltwater. The high P and magnesium content in the subsoil were attributed to parent materials, while the high sodium and potassium content in the surface soil were a result of sea-salt deposition. Glacio-fluvial runoff hampered ecosystem development by inhibiting vegetation development and SOM accumulation. This study emphasizes the importance of considering various soil-forming factors, including parent/subglacial materials, aeolian deposition, and glacio-fluvial runoff, as well as soil age, to obtain a comprehensive understanding of the ecosystem development in glacier forelands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.