Abstract

The growth and aging of 3T3-L1 adipocytes were investigated in a synchronized tissue-culture system. We systematically characterized several major aspects of adipocyte metabolism and functions as variables of cell age. We found that terminal differentiation of 3T3-L1 cells is followed by a near-linear hypertrophic growth (increase in triglyceride content) of the cultured adipocytes throughout a 20-day study period. However, three metabolically and functionally distinct stages are recognized. The first stage overlaps with differentiation and is represented by small immature adipocytes. The second stage is characterized by fully mature adipocytes that show peaked overall metabolic activities. The third stage is marked by cell aging, with deterioration in every major aspect of the cell's functionality except for the function of net energy storage, which is preserved even in aged adipocytes. Compared with young mature adipocytes, older cells are increasingly insulin resistant, have decreased glucose uptake and fuel consumption, and show impaired glycerokinase-mediated fatty acid reesterification. Moreover, aged adipocytes show reduced gene expression for adiponectin and leptin, each of which is important in systemic regulation of energy metabolism. The characterization of these cell age-dependent changes in adipocyte functionality provides a model for understanding dynamic changes at the tissue level and suggests that adipose tissue is modifiable via adipocyte aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.