Abstract

Objectives: Adenosine monophosphate-activated kinase (AMPK) is an energy-specific sensor within the central nervous system. In this study, we observed AMPK and its phosphorylated form (pAMPK) in the hippocampal CA1 region after 5 minutes of transient forebrain ischemia. In addition, we also investigated the effects of Compound C, an AMPK inhibitor, against ischemic damage in gerbils.Methods: Adenosine monophosphate-activated kinase and pAMPK immunoreactivity was observed in the hippocampal CA1 region at various time points after ischemia and Compound C was intraperitoneally administered to gerbils immediately after reperfusion and the animals were sacrificed at 5 days after ischemia/reperfusion.Results: Adenosine monophosphate-activated kinase immunoreactivity was transiently increased in the hippocampal CA1 region 1–2 days after ischemia/reperfusion, while AMPK immunoreactivity was almost undetectable in the stratum pyramidale of the CA1 region 4–7 days after ischemia/reperfusion. The administration of Compound C caused a dose-dependent decrease in the ischemia-induced hyperactive behavior, the depletion of ATP, and lactate accumulation in the hippocampal CA1 region within 24 hours after ischemia/reperfusion. In addition, the administration of Compound C decreased reactive gliosis (astrocytes and microglia) and increased the number of cresyl violet-positive neurons when compared to the vehicle-treated group at 5 days post-ischemia/reperfusion.Conclusion: These results suggest that AMPK is transiently phosphorylated following forebrain ischemia in the hippocampal CA1 region and inhibition of AMPK has neuroprotective effects against ischemic damage through the reduction of ATP depletion and lactate accumulation in the hippocampal CA1 region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.