Abstract

Stress, depending on intensity and duration, elicits adaptive or maladaptive physiological effects. Increasing evidence shows those patterns of advantageous versus deleterious physiologic stress effects also exist for some brain functions, including learning and memory. For example, short stress enhances, while chronic stress impairs, performance on numerous cognitive tasks in male rats. In contrast, performance of female rats is enhanced, or not altered, following both short-term and long-term stress exposure on the same behavioral tasks. The current study was designed to better characterize the behavioral effects of sustained chronic restraint stress in female rats. Female Sprague Dawley rats were assigned to a stress (restraint, 6 h/day, 35 days) or control (no stress) condition, weighed weekly, and then tested on open field (OF), object recognition (OR) and object placement (OP) tasks. Stressed females gained less weight during stress than controls. On the OF, there were no group differences in locomotor activity, but stressed females made fewer inner visits than controls, indicating increased anxiety. Both groups successfully performed the OP and OR tasks across all inter-trial delays, indicating intact non-spatial and spatial memory in both control and stress females. The current results provide preliminary evidence that the commonly used chronic restraint stress model may not be an efficient stressor to female rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.