Abstract
Experimentally naive rats show variance in their locomotor reactivity to novelty, some displaying higher (HR) while others displaying lower (LR) reactivity, associated with vulnerability to stress. We employed a chronic variable physical stress regimen incorporating intermittent and random exposures of physical stressors or control handling during the peripubertal-juvenile period to assess interactions between stress and the LRHR phenotype in depressive- and anxiety-like behaviors on the forced swim and social interaction tests, respectively. A decrease in immobility in the forced swim test along with a decrease in social contact in the social interaction test were observed in the juvenile HRs, coupled with increases in brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus and in the basolateral amygdala with chronic variable physical stress. In contrast, an increase in immobility in the forced swim test and a decrease in social contact was observed in the LR counterparts coupled with an increase in the BDNF mRNA in the basolateral amygdala following chronic variable physical stress. Furthermore, chronic physical stress led to increased H3 and H4 acetylation at the P2 and P4 promoters of the hippocampal BDNF gene in the HR rats that is associated with increased suprapyramidal mossy fibre (SP-MF) terminal field volume. In contrast, chronic variable physical stress led to decreased H4 acetylation at the P4 promoter, associated with decreased SP-MF volume in the LR rats. These findings show dissociation in depressive- and anxiety-like behaviors following chronic variable physical stress in the juvenile HR animals that may be mediated by increased levels of BDNF in the hippocampus and in the amygdala, respectively. Moreover, chronic variable physical stress during the peripubertal-juvenile period results in opposite effects in depressive-like behavior in the LRHR rats by way of inducing differential epigenetic regulation of the hippocampal BDNF gene that, in turn, may mediate mossy fibre sprouting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.