Abstract

Systemic lupus erythematosus (SLE) is characterized by hypertension that results from chronic renal inflammation and dysautonomia in the form of dampened vagal tone. In health, the vagus nerve regulates inflammatory processes through mechanisms like the cholinergic anti-inflammatory pathway; so in the case of SLE, reduced efferent vagus nerve activity may indirectly affect renal inflammation and therefore hypertension. In this study, we sought to investigate the impact of disrupting vagal neurotransmission on renal inflammation and hypertension in the setting of chronic inflammatory disease. Female SLE (NZBWF1) and control (NZW) mice were subjected to a right unilateral cervical vagotomy or sham surgery and 3 wk later were implanted with indwelling catheters to measure blood pressure. Indices of splenic and renal inflammation, as well as renal injury, were assessed. Unilateral vagotomy blunted SLE-induced increases in mean arterial pressure, albumin excretion rate, and glomerulosclerosis. This protection was associated with reduced splenic T cells and attenuated SLE-induced increases in renal proinflammatory mediators. In summary, these data indicate that unilateral vagotomy reduces renal inflammation and reduces blood pressure in SLE mice. The vagus nerves have myriad functions, and perhaps other neuroimmune interactions compensate for the ligation of one nerve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call