Abstract

We have recently shown that fluoxetine, a serotonin-specific reuptake inhibitor (SSRI), has low micromolar affinity for the 5-HT(2C) receptor (but not for 5-HT(2A) and 5-HT(2B) receptors) in primary cultures of mouse astrocytes. This was determined as phosphorylation (stimulation) of extracellular-regulated kinase 1 and 2 (ERK(1/2)) by transactivation-mediated phosphorylation of the epidermal growth factor (EGF) receptor, followed by conventional EGF receptor signaling (Li et al., Psychopharmacology 194:333-334, 2007). Paroxetine has an identical effect. The present study shows that chronic fluoxetine treatment with even higher affinity (EC(50) = 0.5-2.0 microM) upregulates Ca(2+)-dependent phospholipase A(2) (cPLA(2)), which releases arachidonic acid from the sn-2 position of membrane-bound phospholipid, without effect on secretory PLA(2) (sPLA(2)) and intracellular PLA(2) (iPLA(2)). This demonstration replicates the fluoxetine-induced cPLA(2) upregulation in rat brain shown by Rao et al. (Pharmacogenomics J 6:413-420, 2006) and provides the new information that upregulation (1) occurs in astrocytes, (2) is evoked by stimulation of 5-HT(2B) receptor, and (3) requires transactivation-mediated ERK(1/2) phosphorylation. Similar upregulation of cPLA(2) in intact brain in response to 5-HT(2)-mediated signaling by elevated serotonin levels and/or an SSRI during antidepressant treatment may explain the repeatedly reported ability of SSRIs to normalize regional decreases which occur in brain metabolism during major depression, since (1) arachidonic acid strongly stimulates glucose metabolism in cultured astrocytes (Yu et al., J Neurosci Res 64:295-303, 1993) and (2) plasma concentrations of arachidonic acid in depressed patients are linearly correlated with regional brain glucose metabolism (Elizabeth Sublette et al., Prostaglandins Leukot Essent Fatty Acids 80:57-64, 2009).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.