Abstract

Nanoclays are found in the air, water, and soil, and modified nanoclays are being developed and used in several consumer products. For example, modified nanoclays are used to remove pollutants from wastewater. Ironically, however, nanoclays are now considered emerging contaminants. Indeed, release of modified nanoclays in aquatic systems, even as remediating agents, could adversely affect associated wildlife. However, aquatic organisms have interacted with natural nanoclays for millennia, and it is unclear if modified nanoclays induce stronger effects than the nanoclays that occur naturally. The concentrations over which nanoclays occur and illicit negative effects are not well studied. This study investigated the dose response of a natural nanoclay (Na+montmorillonite) relative to two modified nanoclays (Cloisite®30B and Novaclay™) on survival, body condition, and liver pathomorphology of Gambusia holbrooki after 14 days of exposure. Although none of the nanoclays affected survival and body condition of G. holbrooki over 14 days, each nanoclay induced histopathological changes in liver tissues at very low concentrations (LOAEL: 0.01 mgL−1). The effects of nanoclays on hepatic cell circulatory (blood cell aggregation with increased number of Kupffer cells and hemosiderin deposits), regressive (hepatocyte vacuolization), and degenerative (cell death) changes of mosquito fish varied among nanoclay types. Novaclay™ at low concentrations caused circulatory changes on hepatic tissues of G. holbrooki, whereas both natural nanoclays and Cloisite®30B showed little effect on circulatory endpoints. In contrast, all of the nanoclays induced regressive and degenerative changes on liver tissues of mosquito fish across all concentrations tested. This study clearly reveals that natural and modified nanoclays have important health implications for fish and other aquatic organisms. Consequently, the widespread use of modified nanoclays in several applications and increased release of natural nanoclays through erosion or other processes needs to be evaluated in more detail especially in the context of their safety for aquatic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call