Abstract

We conducted two 90 day chronic toxicity studies with two endangered fish, razorback sucker and bonytail. Swim-up larvae were exposed in a reconstituted water simulating the middle Green River. The toxicant mixture simulated the environmental ratio and concentrations of inorganics reported in a Department of the Interior study for the mouth of Ashley Creek on the Green River, and was composed of nine elements. The mixture was tested at 1X, 2X, 4X, 8X, and 16X where X was the measured environmental concentration (2 μg/L arsenic, 630 μg/L boron, 10 μg/L copper, 5 μg/L molybdenum, 51 μg/L selenate, 8 μg/L selenite, 33 μg/L uranium, 2 μg/L vanadium, and 20 μg/L zinc). Razorback sucker had reduced survival after 60 days exposure to the inorganic mixture at 8X, whereas growth was reduced after 30 and 60 days at 2X and after 90 days at 4X. Bonytail had reduced survival after 30 days exposure at 16X, whereas growth was reduced after 30, 60, and 90 days at 8X. Swimming performance of razorback sucker and bonytail were reduced after 60 and 90 days of exposure at 8X. Whole-body residues of copper, selenium, and zinc increased in a concentration-response manner and seemed to be regulated at 90 days of exposure at 4X and lower treatments for razorback sucker, and at 8X and lower for bonytail. Adverse effects occurred in fish with whole-body residues of copper, selenium, and zinc similar to those causing similar effects in other fish species. Comparison of adverse effect concentrations with measured environmental concentrations showed a high hazard to the two endangered fish. Irrigation activities may be a contributing factor to the decline of these endangered fishes in the middle Green River. ©2000 John Wiley & Sons, Inc. Environ Toxicol 15: 48–64, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.