Abstract

Mercury (Hg) is a kind of heavy metal pollutant widely existing in the aquatic environment, and it is also recognized to have a highly toxic effect on fish. In this study, silver carp (Hypophthalmichthys molitrix) larvae were exposed to 0 (control), 1, 5, and 10 μg/L Hg2+ for 2 weeks. Antioxidant ability, neurotoxicity, and thyroid hormones (THs) content were evaluated. In comparison with the control, the superoxide dismutase (SOD) activity and the glutathione (GSH) activity were lower in silver carp exposed to 10 μg/L Hg2+. The lowest catalase (CAT) activity was found in the 10 μg/L Hg2+, while malondialdehyde (MDA) content was not significantly different among all groups. Compared with the control, monoamine oxidase (MAO) activity and nitric oxide (NO) content were significantly higher in the 10 μg/L Hg2+, while acetylcholinesterase (AChE) activity significantly decreased. Compared with the control, triiodothyronine (T3) content was significantly higher in the 1 μg/L Hg2+ and significantly lower in the 10 μg/L Hg2+; the 1 μg/L and 5 μg/L Hg2+ groups had significantly higher thyroxine (T4) content than the other groups. In the 1 μg/L Hg2+, the integrated biomarker response (IBR) index value was the highest. In summary, exposure to Hg could decrease the antioxidant ability, cause changes in neurotoxic parameters, and induce disorders of the thyroid hormone system in silver carp larvae. The results of this study may contribute to the understanding of the adverse effects of chronic mercury poisoning on fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call