Abstract

Radiation can potentially suppress neovascularization by inhibiting the incorporation of hematopoietic precursors as well as damaging mature endothelial cells. The purpose of these studies was to quantify the effect of radiation on angiogenesis and to examine the relationship between bone marrow reconstitution and neovascularization. Immune competent, severe combined immunodeficient, RAG1-deficient, and green fluorescence protein transgenic mice in the C57 genetic background, as well as the highly angiogenic 129S1/SvlmJ strain of mice, underwent whole-body or localized exposure to radiation. The hematopoietic systems in the irradiated recipients were restored by bone marrow transfer. Hematopoietic reconstitution was assessed by doing complete blood counts. Angiogenesis was induced in the mouse cornea using 80 ng of purified basic fibroblast growth factor, and the neovascular response was quantified using a slit lamp biomicroscope. Following whole-body exposure and bone marrow transplantation, the hematopoietic system was successfully reconstituted over time, but the corneal angiogenic response was permanently and significantly blunted up to 66%. Localized exposure of the eyes to radiation suppressed corneal angiogenesis comparably to whole-body exposure. Whole-body irradiation with ocular shielding induced bone marrow suppression but did not inhibit corneal neovascularization. In mice exposed to radiation before tumor implantation, the reduced local angiogenic response correlated with significantly reduced growth of tumor cells in vivo. These results indicate that bone marrow suppression does not suppress neovascularization in the mouse cornea and that although hematopoietic stem cells can readily reconstitute peripheral blood, they do not restore a local radiation-induced deficit in neovascular response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.