Abstract

Background/Aims: Spinal glia activation has been proposed as one mechanism underlying visceral hyperalgesia in a rodent model of chronic stress. In order to assess the possible role of changes in circulating cytokines and in blood-spinal cord barrier (BSCB) permeability in spinal glia activation, we studied the time course of peripheral and spinal pro-inflammatory cytokines and of spinal and satellite glia markers in response to repeated water avoidance (WA) stress. Methods: Spinal cords and dorsal root ganglion cells (DRGs) were collected from control rats, rats exposed to 1-hour WA, or 1-hour WA daily for 5 days or 1-hour WA daily for 10 days. Results: We demonstrated a time-dependent change in circulating IL-1β and spinal IL-1β, IL-6 and TNF-α in stressed animals compared with controls. We found altered expression of the astrocyte markers GFAP and Connexin 43 in spinal and DRG samples at different time points. Finally, WA was associated with increased BSCB permeability. Conclusions: These findings confirm the concept that both peripheral and spinal immune markers are altered after chronic WA and suggest a possible link between stress-induced increase of peripheral pro-inflammatory cytokines, changes in satellite glial cells, increase in BSCB permeability and increase in spinal pro-inflammatory mediators suggesting glia activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.