Abstract

Chronic restraint stress (CRS) induces a variety of changes in brain function, some of which are mediated by glucocorticoids. The response to stress occurs in a sex-specific way, and may include mitochondrial and synaptic alterations. The synapse is highly dependent on mitochondrial energy supply, and when mitochondria become dysfunctional, they orchestrate cell death. This study aimed to investigate the CRS effects on mitochondrial respiratory chain activity, as well as mitochondrial potential and mass in cell body and synapses using hippocampus, cortex and striatum of male and female rats. Rats were divided into non-stressed (control) and stressed group (CRS during 40days). Results showed that CRS increased complex I-III activity in hippocampus. We also observed an interaction between CRS and sex in the striatal complex II activity, since CRS induced a reduction in complex II activity in males, while in females this activity was increased. Also an interaction was observed between stress and sex in cortical complex IV activity, since CRS induced increased activity in females, while it was reduced in males. Glucocorticoid receptor (GR) content in cortex and hippocampus was sexually dimorphic, with female rats presenting higher levels compared to males. No changes were observed in GR content, mitochondrial potential or mass of animals submitted to CRS. It was concluded that CRS induced changes in respiratory chain complex activities, and some of these changes are sex-dependent: these activities are increased in the striatal mitochondria by CRS protocol mainly in females, while in males it is decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call