Abstract
Prolonged social subjugation produces physiological indices of chronic stress in rats. In the current study, we examined the impact of social stress on glutamic acid decarboxylase (GAD) isoforms, corticotropin-releasing hormone (CRH) and vasopressin mRNA expression in forebrain stress circuitry, using the visible burrow system model of dominance–subordination. Subordinate male rats develop behavioral and neuroendocrine changes consistent with exposure to chronic stress, including marked loss of body weight and elevation of basal plasma corticosterone relative to dominant rats. Forebrain GAD65, GAD67, CRH and vasopressin mRNA expression in central stress-regulatory circuits were examined by in situ hybridization. Elevated CRH mRNA was observed in the oval nucleus of the bed nucleus of the stria terminalis (BST) of subordinate males. In contrast, GAD67 expression was decreased in the interfascicular nucleus of the BST in both the subordinate and dominant rats compared to non-burrow control rats. No changes in CRH, GAD or vasopressin were observed in amygdaloid nuclei, other BST nuclei or in the hypothalamic paraventricular nucleus. Collectively, these data suggest that exposure to the visible burrow system attenuates BST GAD expression regardless of social status, whereas the enhanced physiological responses to social stress seen in subordinates may be associated with enhanced CRH expression in the oval nucleus of the BST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.