Abstract

When faced with limited resources, juvenile salmonid fish form dominance hierarchies that result in social stress for socially subordinate individuals. Social stress, in turn, can have consequences for the ability of the fish to respond to additional stressors such as pathogens or exposure to pollutants. In the present study, the possibility that social stress affects the ability of rainbow trout (Oncorhynchus mykiss) to tolerate acute increases in water temperature was investigated. To this end, we first evaluated physiological and cellular stress responses following a 1 h heat shock in juvenile fish in dominance hierarchies. We measured stress hormone (cortisol and catecholamines) concentrations and blood, brain and liver tissue levels of three heat shock proteins (HSPs), the stress inducible HSP70, the constitutive HSC70 and HSP90, in dominant and subordinate trout. No effects of social status on the hormonal response to the heat stress were detected, but the cellular heat shock response in the brain and liver of dominant and subordinate individuals was inhibited. We then assessed thermal tolerance in dominant and subordinate fish through critical thermal maximum temperature (CT(max)) trials and measured HSPs following the heat shock. Subordinate fish were less thermally tolerant than their dominant counterparts. We conclude that social stress impacts the ability of fish to respond, on a cellular scale and in a tissue-specific manner, to increases in water temperature, with likely consequences for overall fitness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call