Abstract

Consequence of the long-term use of psychostimulants as treatment for attention deficit/hyperactivity disorder (ADHD) is unknown, particularly whether treatment with psychostimulants at an early age increases an individual's potential for cross-sensitization to other stimulants exposed at a later age. Cross-sensitization occurs when pretreatment with one stimulant leads to greater sensitivity to another stimulant. The aims of this study were to investigate whether chronic treatment with methylphenidate (MPD; Ritalin) in both juvenile and adult rats induced cross-sensitization to amphetamine at a later time and whether this cross-sensitization to amphetamine was age-dependent. Male Sprague-Dawley rats were randomly divided into four treatment groups: (1) group treated intraperitoneally (i.p.) with saline as juveniles and adults, (2) group treated with 0.6 mg/kg amphetamine, i.p., as juveniles and adults, (3) group treated with 2.5 mg/kg MPD, i.p., as juveniles and adults, and (4) group treated with saline, i.p., as juveniles and 2.5 mg/kg MPD, i.p., as adults. All of the animals received an amphetamine (0.6 mg/kg, i.p.) challenge on the last experimental day. We examined the effects of chronic MPD treatment in juvenile and adult rats on their locomotor response to an acute amphetamine exposure. Three different locomotor indices were studied using an automated activity monitoring system. Changes in the locomotor responses to amphetamine of these animals were compared to those of control rats that were pretreated with saline as juveniles and as adults. It was found that prior chronic treatment with MPD produced cross-sensitization to the locomotor response to amphetamine as observed in the horizontal activity and total distance traveled. It also appears that this cross-sensitization to amphetamine may not be dependent on the age of the subjects, i.e., whether subjects were juvenile or adult rats when they received drugs, but rather it depended on the behavioral index examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.