Abstract

Does chronic voluntary physical activity alter hepatic or intestinal capacities for xenobiotic biotransformation? This question was investigated by comparing biotransformation enzyme activities in liver and small intestine of active and sedentary rats. Male rats allowed unlimited access to a running wheel and fed ad lib. for 6 weeks were weight-matched to sedentary controls; the active rats ate 22% more food than the sedentary rats (P < 0.05). Active rats ran 2.8 ± 0.6 miles/day. Liver weights were higher in the active rats (11.2 ± 0.2 vs 9.8 ± 0.2 g; P < 0.05), as were total liver protein, and liver microsomal and cytosolic protein (P < 0.05). As a result of liver hypertrophy, the active rats showed higher total liver activity of several biotransformation enzymes, including 2-naphthol sulfotransferase, styrene oxide hydrolase, benzphetamine N-demethylase, ethacrynic acid glutathione S-transferase and morphine UDP-glucuronosyltransferase (P < 0.05). In contrast, there was no detectable difference in total liver N-acetyltransferase activity toward p-aminobenzoic acid, 2-naphthylamine, and 2-aminofluorene as well as, relative hepatic enzyme activity (expressed per g liver or per mg protein) and total and relative intestinal enzyme activity. We conclude that chronic voluntary physical activity, accompanied by an increased food intake, results in liver hypertrophy and potentially increases total hepatic capacity to biotransform certain xenobiotic chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.