Abstract

In this study, we tested the hypothesis that chronic administration of phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor antagonist, would cause a long-lasting behavioral sensitization associated with neuronal toxicity. Female Sprague-Dawley rats were administered PCP (20 mg/kg, i.p.) once a day for 5 days, withdrawn for 72 hr, placed in locomotor activity chambers, and challenged with 3.2 mg/kg PCP. Following assessment of locomotor activity, the rats were killed and their brains processed for analysis of apoptosis by either electron microscopy or terminal dUTP nick-end labeling (TUNEL). In study I, PCP challenge produced a much more robust and long-lasting increase in locomotor activity in rats chronically treated with PCP than in those chronically treated with saline. In study II, clozapine pretreatment blunted the degree of sensitization caused by PCP. In study I, a marked increase in TUNEL-positive neurons was found in layer II of the olfactory tubercle and piriform cortex of rats chronically treated with PCP. Many of these neurons had crescent-shaped nuclei consistent with apoptotic condensation and margination of nuclear chromatin under the nuclear membrane. Acute PCP had no effect. Electron microscopy revealed that PCP caused nuclear condensation and neuronal degeneration consistent with apoptosis. Cell counts in layer II of the piriform cortex revealed that chronic PCP treatment resulted in the loss of almost 25% of the cells in this region. However, an increase in glial fibrillary acidic protein (GFAP)-positive cells in the molecular layer suggests that this neurotoxicity also may involve necrosis. In study II, the PCP-induced neuronal degeneration was essentially completely abolished by clozapine pretreatment. This pattern of degeneration was found to coincide with the distribution of the mRNA of the NR1 subunit of the NMDA receptor. The relevance of these data to a PCP model of chronic NMDA receptor hypofunction is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.