Abstract

Regional cerebral blood flow (rCBF) during controlled hemorrhagic hypotension (140-20 mm Hg) was assessed 10-14 days after chronic unilateral sectioning of parasympathetic and/or sensory fibers innervating pial vessels in spontaneously hypertensive rats (SHR). rCBF was measured in the cortical barrel fields bilaterally by laser Doppler blood flowmetry. Immunohistochemistry of middle cerebral artery (MCA) whole mount preparations was used to verify the surgical lesion. During hemorrhagic hypotension, rCBF was equivalent on the two sides in shams, after selective sensory denervation, or in parasympathetically sectioned animals exhibiting small decreases (less than or equal to 30%) in immunoreactive vasoactive intestinal peptide (VIP)-containing fibers. After chronic parasympathetic denervation, decreases in perfusion pressure were accompanied by greater reductions in rCBF on the lesioned side; changes in vascular resistance were also attenuated on that side. The rCBF response to hypercapnia (PaCO2 50 mm Hg), however, was symmetrical and robust. To examine the effects of impaired neurogenic vasodilation on the pathophysiology of cerebral ischemia, infarct size was measured 24 h following tandem MCA occlusion in denervated animals. Infarction volume was larger after selective parasympathetic sectioning (sham, 156 +/- 27 vs. 196 +/- 32 mm3, respectively) but only in those denervated animals demonstrating greater than or equal to 40% decrease in immunoreactive VIP-containing fibers within the ipsilateral MCA. Lower than expected blood flow/perfusion pressure in the cortex distal to an occluded blood vessel may relate the observed blood flow responses to the occurrence of larger cortical infarcts in parasympathetically denervated animals. If true, the findings suggest a novel role for neurogenic vasodilation in the pathophysiology of cerebral ischemia and in rCBF regulation within the periinfarction zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.