Abstract
BackgroundChronic infections can profoundly affect the physiology, behavior, fitness and longevity of individuals, and may alter the organization and demography of social groups. Nosema apis and Nosema ceranae are two microsporidian parasites which chronically infect the digestive tract of honey bees (Apis mellifera). These parasites, in addition to other stressors, have been linked to increased mortality of individual workers and colony losses in this key pollinator species. Physiologically, Nosema infection damages midgut tissue, is energetically expensive and alters expression of immune genes in worker honey bees. Infection also accelerates worker transition from nursing to foraging behavior (termed behavioral maturation). Here, using microarrays, we characterized global gene expression patterns in adult worker honey bee midgut and fat body tissue in response to Nosema infection.ResultsOur results indicate that N. apis infection in young workers (1 and 2 days old) disrupts midgut development. At 2 and 7 days post-infection in the fat body tissue, N. apis drives metabolic changes consistent with energetic costs of infection. A final experiment characterizing gene expression in the fat bodies of 14 day old workers parasitized with N. apis and N. ceranae demonstrated that Nosema co-infection specifically alters conserved nutritional, metabolic and hormonal pathways, including the insulin signaling pathway, which is also linked to behavioral maturation in workers. Interestingly, in all experiments, Nosema infection did not appear to significantly regulate overall expression of canonical immune response genes, but infection did alter expression of acute immune response genes identified in a previous study. Comparative analyses suggest that changes in nutritional/metabolic processes precede changes in behavioral maturation and immune processes.ConclusionsThese genome-wide studies of expression patterns can help us disentangle the direct and indirect effects of chronic infection, and understand the molecular pathways that regulate disease symptoms.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-799) contains supplementary material, which is available to authorized users.
Highlights
Chronic infections can profoundly affect the physiology, behavior, fitness and longevity of individuals, and may alter the organization and demography of social groups
The microsporidian parasites Nosema apis and Nosema ceranae and their honey bee (Apis mellifera) hosts [3] provide an excellent model for studying the molecular basis of direct and indirect effects of chronic parasitization on individuals, social interactions and social group organization
Effects of Nosema apis infection on midgut and fat body gene expression PCR of midgut tissue confirmed that samples collected in 2008 had N. apis infections only (Additional file 1: Figure S1A)
Summary
Chronic infections can profoundly affect the physiology, behavior, fitness and longevity of individuals, and may alter the organization and demography of social groups. Nosema apis and Nosema ceranae are two microsporidian parasites which chronically infect the digestive tract of honey bees (Apis mellifera). These parasites, in addition to other stressors, have been linked to increased mortality of individual workers and colony losses in this key pollinator species. The microsporidian parasites Nosema apis and Nosema ceranae and their honey bee (Apis mellifera) hosts [3] provide an excellent model for studying the molecular basis of direct and indirect effects of chronic parasitization on individuals, social interactions and social group organization. By studying gene expression patterns in tissues that are directly and systemically affected by Nosema species parasitization, we can begin to unravel the causative pathways that underlie host morbidity and mortality
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.