Abstract

Adenosine monophosphate-activated protein kinase (AMPK), a vital regulator of glucose metabolism, may affect insulin secretion in beta-cells. However, the role of AMPK in beta-cell lipotoxicity remains unclear. Fenofibrate has been reported to regulate lipid homeostasis and is involved in insulin secretion in pancreatic beta-cells. In the present study, we aimed to investigate the effect of palmitate on AMPK expression and glucose-stimulated insulin secretion (GSIS) in rat islets and INS-1 beta-cell, as well as the effect of fenofibrate on AMPK and GSIS in INS-1 cells treated with palmitate. Isolated rat islets and INS-1 beta-cells were treated with and without palmitate or fenofibrate for 48 h. The mRNA levels of the AMPK alpha isoforms were measured by real-time PCR. Western blotting was used to detect the protein expression of total AMPKalpha (TAMPKalpha), phosphorylated AMPKalpha (P-AMPKalpha), and phosphorylated acetyl coenzyme A carboxylase (P-ACC). Insulin secretion was detected by radioimmunoassay induced by 20 mmol/L glucose as GSIS. The results showed that chronic exposure of beta-cells to palmitate for 48 h inhibited the expression of AMPK alpha1 mRNA and T-AMPK alpha protein levels, as well as P-AMPK alpha and PACC protein expressions in a dose-dependent manner. Accordingly, GSIS was inhibited by palmitate. Compared with the palmitate-treated cells, fenofibrate ameliorated these changes impaired by palmitate and exhibited a significant elevation in the expression of AMPK alpha and GSIS. Our findings suggest a role of AMPK alpha reduction in beta-cell lipotoxicity and a novel role of fenofibrate in improving GSIS associated with the AMPK alpha activation in beta-cells chronically exposed to palmitate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.