Abstract

Patients suffering chronic pain are at high risk of suffering long-lasting emotional disturbances characterized by persistent low mood and anxiety. We propose that this might be the result of a functional impairment in noradrenergic circuits associated with locus coeruleus (LC) and prefrontal cortex, where emotional and sensorial pain processes overlap. We used a chronic constriction injury of sciatic nerve as a model of neuropathic pain in male Sprague-Dawley rats to assess the time-dependent changes that might potentially precipitate mood disorders (2, 7, 14, and 28 days after injury). This was measured through a combination of behavioral, electrophysiological, microdialysis, immunohistochemical, and Western blot assays. As expected, nerve injury produced an early and stable decrease in sensorial pain threshold over the testing period. By contrast, long-term neuropathic pain (28 days after injury) resulted in an inability to cope with stressful situations, provoking depressive and anxiogenic-like behaviors, even more intense than the aversiveness associated with pain perception. The onset of these behavioral changes coincided with irruption of noradrenergic dysfunction, evident as: an increase in LC bursting activity; in tyrosine hydroxylase expression and that of the noradrenaline transporter; and enhanced expression and sensitivity of α2-adrenoceptors in the LC. Long-term neuropathic pain leads to anxio-depressive-like behaviors that are more predominant than the aversion of a painful experience. These changes are consistent with the impairment of noradrenergic system described in depressive disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call