Abstract

Chronic obstructive pulmonary disease (COPD), a lung disease, affects a large number of people worldwide, leading to death. Here, we analyzed the compositional features and trends of codon usage of the genes influencing COPD to understand molecular biology, genetics, and evolutionary relationships of these genes as no work was reported yet. Coding sequences of COPD genes were found to be rich in guanine-cytosine (GC) content. A high value (34-60) of the effective number of codons of the genes indicated low codon usage bias (CUB). Correspondence analysis suggested that the COPD genes were distinct in their codon usage patterns. Relative synonymous codon usage values of codons differed between the more preferred codons and the less-preferred ones. Correlation analysis between overall nucleotides and those at third codon position revealed that mutation pressure might influence the CUB of the genes. The high correlation between GC12 and GC3 signified that directional mutation pressure might have operated at all the three codon positions in COPD genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.