Abstract

Methyllycaconitine (MLA) is reported to be a selective antagonist for the nicotinic acetylcholine receptor alpha7 subtype and has been found in animal behavioral studies to reduce nicotine self-administration and attenuate nicotine withdrawal symptoms. While MLA crosses the blood-brain barrier (BBB), no studies have assessed brain uptake in animals subjected to chronic nicotine exposure. Given that chronic nicotine administration has been reported to alter BBB parameters that may affect the kinetic BBB passage of MLA, we evaluated MLA brain uptake in naive and S-(-)nicotine-exposed rats (4.5 mg/kg/day for 28 days; osmotic minipumps) using in situ rat brain perfusions. Our results demonstrate that in situ(3)H-MLA brain uptake rates in naive animals approximate to intravenous kinetic data (K(in), 3.24 +/- 0.71 x 10(-4) mL/s/g). However, 28-day nicotine exposure diminished (3)H-MLA brain uptake by approximately 60% (K(in), 1.29 +/- 0.4 x 10(-4) mL/s/g). This reduction was not related to nicotine-induced (3)H-MLA brain efflux or BBB transport alterations. Similar experiments also demonstrated that the passive permeation of (14)C-thiourea was diminished approximately 24% after chronic nicotine exposure. Therefore, it appears that chronic nicotine exposure diminishes the blood-brain passive diffusion of compounds with very low extraction rates (i.e. permeability-limited compounds). These findings imply that the pharmacokinetics of neuropharmaceutical agents that are permeability limited may need to be re-evaluated in individuals exposed to nicotine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.