Abstract

Tetrachlorobisphenol A (TCBPA) has been used as an alternative flame retardant in various fields. However, the long-term effects of TCBPA on the nervous system remain unclear. Thus, Caenorhabditis elegans (L4 larvae) were selected as a model animal to investigate the neurotoxic effects and underlying mechanisms after 10 d of TCBPA exposure. Exposure to TCBPA (0.01–100 μg/L) decreased locomotive behavior in a concentration-dependent manner. In addition, reactive oxygen species (ROS) formation and lipofuscin accumulation were significantly increased, and the expression of sod-3 was upregulated in the exposed nematodes, indicating that TCBPA exposure induced oxidative damage. Furthermore, 100 μg/L TCBPA exposure caused a reduction in dopamine and serotonin levels, and damage in dopaminergic and serotoninergic neurons, which was further confirmed by the downregulated expression of related genes (e.g., dop-1, dop-3, cat-1, and mod-1). Molecular docking analysis demonstrated the potential of TCBPA to bind to the neurotransmitter receptor proteins DOP-1, DOP-3, and MOD-1. These results indicate that chronic exposure to TCBPA induces neurotoxic effects on locomotive behavior, which is associated with oxidative stress and damage to dopaminergic and serotoninergic neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.