Abstract

Growing evidence suggests that adult-born granule cells integrate into hippocampal networks and are required for proper cognitive function. Although neuroinflammation is involved in many disorders associated with cognitive impairment, it remains unknown whether it impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Under similar behavioral conditions, exploration-induced expression of the immediate-early gene Arc in hippocampal cells has been linked to cellular activity observed by electrophysiological recording. By detecting exploration-induced Arc protein expression, we investigated whether neuroinflammation alters the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Neuroinflammation was induced in rats by intra-cerebroventricular infusion of lipopolysaccharide for 28 days. Animals received bromodeoxyuridine injections starting on day 29 (5 days) and were euthanized two months later. Persistent lipopolysaccharide-induced neuroinflammation was reliably detected by microglial activation in the hippocampus. Neuroinflammation did not impact the number of adult-born neurons but did alter their migration pattern through the granule cell layer. There was a positive correlation between the density of activated microglia and alterations in the fraction of existing granule neurons expressing Arc, suggesting that neuroinflammation induced a long-term disruption of hippocampal network activity. The proportion of adult-born neurons expressing behaviorally induced Arc was significantly lower in lipopolysaccharide-treated rats than in controls. This observation supports the fact that neuroinflammation significantly impacts adult-born neurons recruitment into hippocampal networks encoding spatial information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.