Abstract

OBJECTIVEThe incidence of high dietary carbohydrate-induced type 2 diabetes is increasing worldwide. Methylglyoxal (MG) is a reactive glucose metabolite and a major precursor of advanced glycation end products (AGEs). MG levels are elevated in diabetic patients. We investigated the effects of chronic administration of MG on glucose tolerance and β-cell insulin secreting mechanism in 12-week-old male Sprague-Dawley rats.RESEARCH DESIGN AND METHODSMG (60 mg/kg/day) or 0.9% saline was administered by continuous infusion with a minipump for 28 days. We performed glucose and insulin tolerance tests and measured adipose tissue glucose uptake and insulin secretion from isolated pancreatic islets. We also used cultured INS-1E cells, a pancreatic β-cell line, for molecular studies. Western blotting, quantitative PCR, immunohistochemistry, and transferase-mediated dUTP nick-end labeling (TUNEL) assay were performed.RESULTSIn rats treated with MG and MG + l-buthionine sulfoximine (BSO), MG levels were significantly elevated in plasma, pancreas, adipose tissue, and skeletal muscle; fasting plasma glucose was elevated, whereas insulin and glutathione were reduced. These two groups also had impaired glucose tolerance, reduced GLUT-4, phosphoinositide-3-kinase activity, and insulin-stimulated glucose uptake in adipose tissue. In the pancreatic β-cells, MG and MG + BSO reduced insulin secretion, pancreatic duodenal homeobox-1, MafA, GLUT-2, and glucokinase expression; increased C/EBPβ, nuclear factor-κB, MG-induced AGE, Nε-carboxymeythyllysine, and receptor for AGEs expression; and caused apoptosis. Alagebrium, an MG scavenger and an AGE-breaking compound, attenuated the effects of MG.CONCLUSIONSChronic MG induces biochemical and molecular abnormalities characteristic of type 2 diabetes and is a possible mediator of high carbohydrate-induced type 2 diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call