Abstract

Low-level lead (Pb) exposure is associated with behavioral and cognitive dysfunction, but it is not clear how Pb produces these behavioral changes. Pb has been shown to alter auditory temporal processing in both humans and animals. Auditory temporal processing occurs in the superior olivary complex (SOC) in the brainstem, where it is an important component in sound detection in noisy environments and in selective auditory attention. The SOC receives a serotonergic innervation from the dorsal raphe, and serotonin has been implicated in auditory temporal processing within the brainstem and inferior colliculus. Because Pb exposure modulates auditory temporal processing, the serotonergic system is a potential target for Pb. The current study was undertaken to determine whether developmental Pb exposure preferentially changes the serotonergic system within the SOC. Pb-treated mice were exposed to no Pb, very low Pb (0.01 mM), or low Pb (0.1 mM) throughout gestation and through 21 days postnatally. Brainstem sections from control and Pb-exposed mice were immunostained for the vesicular monoamine transporter 2 (VMAT2), serotonin (5-HT), and dopamine-beta-hydroxylase (DbetaH; a marker for norepinephrine) in order to elucidate the effect of Pb on monoaminergic input into the SOC. Sections were also immunolabeled with antibodies to vesicular glutamate transporter 1 (VGLUT1), vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), and vesicular acetylcholine transporter (VAChT) to determine whether Pb exposure alters the glutaminergic, GABAergic, or cholinergic systems. Pb exposure caused a significant decrease in VMAT2, 5-HT, and DbetaH expression, whereas VGLUT1, VGAT, and VAChT showed no change. These results provide evidence that Pb exposure during development alters normal monoaminergic expression in the auditory brainstem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call